

A PAIRING ALGORITHM FOR LANDING AIRCRAFT TO CLOSELY SPACED
PARALLEL RUNWAYS

Amir H. Farrahi, University of California Santa Cruz, Moffett Field, CA
Savita A. Verma, NASA Ames Research Center, Moffett Field, CA

Abstract

To facilitate pairing of aircraft while meeting a
schedule, the pair-scheduling problem for landing
aircraft in Very Closely Spaced Parallel Approaches
was studied. An earlier prototype was adopted and
the scheduling algorithm was extended in several
ways to improve the solution quality and expand the
range of constraints it could handle. This paper
presents the scheduling problem formulation, as well
as enhancements made to an earlier prototype that
made it suitable for application in a human-in-the-
loop simulation carried out recently at NASA Ames
Research Center. Experimental data from the
simulations as well as an extensive set of stress tests
are analyzed and discussed. Results suggest the
algorithm succeeded in suggesting aircraft pairs
acceptable to the air traffic controllers in over 97% of
the cases. Evaluating the performance and scalability
characteristics of the algorithm demonstrates its
effectiveness in discovering feasible aircraft pairs
that meet all the sequencing, separation, pair-group,
and runway assignment constraints. Overall, the high
solution quality and short runtime makes the
proposed algorithm a suitable and attractive
candidate for use in a real-time aircraft-pairing
application.

Introduction
Increasing the airport arrival rates is an

important factor towards meeting the growing
demand in air traffic. The concept of Very Closely
Spaced Parallel Runway (VCSPR) operations is
considered to be a crucial step for realizing
significant increase in arrival throughput during poor
weather conditions when instrument meteorological
conditions apply. It aims to maximize the utilization
in parallel runway systems that may be spaced as
close as 750 ft apart, and thus increase the landing
capacity at hub airports without significant increase
to the airport footprint.

Several operational concepts have been
developed for simultaneous approaches [1–3]. All of
these concepts assume the aircraft are paired by air
traffic controllers before their approach clearances
are given. While there has been much research for
arrival scheduling, the study by Kupfer [4] represents
the only published work that specifically targeted
simultaneous parallel approaches with lateral and
staggered spacing of only a few seconds. Conducting
research into paired arrival scheduling has other
practical long-term applications as well. The insights
gained from these studies could help extend the
capabilities of new and improved tools for terminal
area scheduling such as those currently under
development [5].

This paper presents an improved algorithm for
finding aircraft pairs. This algorithm was developed,
and tested, and used by air traffic controllers for a
HITL simulation conducted recently at NASA Ames
Research Center to study the role of air traffic control
[6]. The prototype development started with a
Genetic Algorithm (GA) developed by Kupfer [4] as
a starting point. Kupfer’s algorithm was quite
successful at finding pairs in the context of the
simplified problem presented in [4]. However, under
the requirements of the HITL simulations and based
on detailed evaluation during an initial pilot study, it
became apparent that Kupfer’s pairing algorithm did
not perform very well under the new requirements
and constraints and that the algorithm required
several adjustments and enhancements. Some of
these enhancements were related to the problem
modeling, while others targeted specific performance
characteristics. This paper presents the formulation of
the new pair-scheduling problem, and chronicles
enhancements implemented to make it suitable for
use in the HITL simulations [6]. Experimental
results are presented and discussed, confirming the
effectiveness of the resulting algorithm.

The rest of this paper is organized as follows.
First, some introductory background is presented
describing the operational concept under

investigation, the motivation for developing the
pairing algorithm, and an overview of the previous
body of related research. Next, the formulation of the
pair-scheduling problem is presented, followed by a
brief discussion of the computational complexity of
the pair-scheduling problem. Next, the rationale for
the solution methodology adopted in the current work
is provided. This is followed by the description of
various modifications, adjustments and enhancements
to the problem modeling, exploration and solution
space control, as well as performance optimization
that were implemented to improve Kupfer’s
algorithm in order to construct a pairing algorithm
that was suitable for a real-time HITL simulation.
Experimental results from the HITL simulations as
well as a large number of arrival scenarios generated
to conduct stress testing on the resulting pairing
algorithm are presented and discussed next. The
paper ends with some concluding remarks, presenting
a summary of the key contributions of this work, and
providing some directions for further research.

Background
The Federal Aviation Administration (FAA)

recognizes that significant capacity is lost when
simultaneous operations performed under visual
conditions are not operational under poor weather
conditions. As a part of its NextGen plan [7], the
FAA aims to reduce the minimum allowable spacing
between runways used for simultaneous operations in
poor visibility, currently 4300 ft., by implementing
revised standards and improved technologies. Table 1
shows a partial listing of airports containing parallel
runways with spacing below 4300 ft. All of these
airports experience severe reduction in aircraft
landing capacities under poor weather conditions
when simultaneous approaches are not possible.

Several concepts that address and could benefit
from the revision of separation standards and
technologies include Simultaneous Offset Instrument
Approaches (SOIA) [8], Airborne Information
Lateral System (AILS) [2] and Terminal Area
Capacity Enhancing Concept (TACEC) [3]. The role
of the air traffic controllers during simultaneous
approaches is different for each of the above
concepts. However, all of these concepts assume that
the air traffic controller will assign aircraft to pairs
with the knowledge that they are properly equipped.
There does not exist any formal tool or process by
which pairing is done, in the current NAS.

Table 1. Airports with Parallel Runways Below
4300 ft Spacing

Airport Runway Spacing
Los Angeles (LAX) 750 ft
San Francisco (SFO) 750 ft
Seattle (SEA) 800 ft
Newark (EWR) 900 ft
Houston (IAH) 1000 ft
Las Vegas (LAS) 1000 ft
Atlanta (ATL) 1000 ft
Dallas-Ft Worth (DFW) 1200 ft
Pittsburgh (PIT) 1200 ft
St. Louis (STL) 1300 ft
Boston (BOS) 1500 ft
Orlando (MCO) 1600 ft
New York (JFK) 3000 ft
Minneapolis (MSP) 3380 ft
Memphis (MEM) 3400 ft
Raleigh (RDU) 3400 ft
Phoenix(PHX) 3565 ft
Salt Lake City (SLC) 3700 ft
Detroit (DTW) 3800 ft

A recent study conducted at NASA Ames
Research Center carried out HITL simulations to
investigate the allocation of tasks under TACEC for
air traffic controllers [6]. This required an algorithm
for pairing aircraft under different levels of
automation in order to investigate the appropriate
human/automation mix for the given task. The
highest level of automation required a pairing
algorithm that would suggest aircraft pairs to the
controllers. This paper describes the problem
formulation and the development of the pairing
algorithm needed for these HITL simulations. In
these simulations, finding and suggesting pairs was
handled by automation while controllers handled the
task of evaluating and accepting or rejecting the
suggested pairs.

Since the pairing problem is very much related
to scheduling aircraft landing, a concise overview of
previous related work in scheduling is provided next.
Scheduling problems arise in numerous applications
and as a result, they have been studied extensively in
the literature. A general survey and classification of
scheduling problems can be found in [9, 10], while
[11, 12] present overview of the scheduling problems
encountered in aircraft and airline scheduling.

The aircraft arrival-scheduling problem has also
been studied extensively. The idea of Constrained
Position Shifts (CPS) was introduced in [13] as a
means for improving the arrival sequence, while [14]
presented a dynamic programming algorithm to
optimize the aircraft arrival sequence and took
advantage of CPS to increase efficiency. Other
heuristics and approaches using genetic algorithms
[15-19], dynamic programming [20, 21], mixed-
integer linear programming with linear relaxations
[22–24], branch and bound techniques [22, 35] or a
combination of the above have also been applied to
the arrival-scheduling problem.

The arrival scheduling problems are often
broadly categorized into static [23] (offline) and
dynamic (online) [17], depending on whether or not
complete knowledge about the set of aircraft that are
going to land is available ahead of time. In this
paper, the focus is on the static case. Another
classification of the arrival scheduling problems is
into single vs. multiple runway landing. While much
of the previous research on scheduling arrival landing
focused on single runway, there have been several
studies including [22, 26, 27] that discuss the
multiple runway case or extend their single runway
approaches to the multiple runway condition.

The scheduling problem for simultaneous
landing of aircraft to very closely parallel runways is
markedly different and more constrained than that of
scheduling for independent landing to multiple
runways. This problem was formulated recently in
[4] and solved exactly using a mixed integer linear
programming (MILP) formulation. As is often the
case, the running time achieved using the proposed
MILP formulation is prohibitively long, making the
approach unsuitable for real-time application.
Therefore, a heuristic technique based on genetic
algorithm [28] fortified with a greedy heuristic was
also presented in [4].

In this paper, the greedily enhanced genetic
algorithm of Kupfer [4] was adopted as the base
implementation. Then, using new requirements and
feedback received during an initial pilot study,
several enhancements were made to create a pairing
algorithm suitable for real-time HITL simulation
conducted in [6].

Concept Description
The concept investigated in the current study is
TACEC [3], developed collaboratively by Raytheon
and NASA Ames Research Center. The TACEC
system allows multiple aircraft to fly in close
formations during the final approach to enable
simultaneous instrument approaches for landing
aircraft on very closely spaced parallel runways that
are as close as 750 ft apart. This would increase the
landing capacity of the airports with closely spaced
parallel runways during low visibility conditions,
achieving arrival rates comparable to visual approach
operations.

Figure 1. Approach Pattern for Aircraft Pair

The process involves pairing aircraft around 30
minutes before the aircraft arrives at the terminal
boundary. As shown in Figure 1, the actual coupling
for the approach is intended to occur 12 nm from the
runway threshold. After this coupling point, the
coupled aircraft converge over a 10nm distance at a
6° angle. For the last 2nm prior to the runway
threshold, the paired aircraft would fly on parallel
flight path segments.

The following aircraft in a pair must be flying
within a safe zone, which is defined by a Lower
Pairing Boundary (LPB) and an Upper Pairing
Boundary (UPB) behind the lead aircraft. The LPB
is defined to minimize the risk of collision in case of

a blunder by the lead aircraft, while the UPB is
defined in order for the follower aircraft to avoid its
encounter with the wake vortex of the lead aircraft.
In this study, the LPB and UPB are set to 5s and 25s
behind the lead aircraft, respectively. Figure 2
demonstrates the notions of LPB and UPB and the
safe zone. The pairing algorithm is instructed to
schedule the pairs in order for the follower aircraft to
be situated in the middle of the safe zone. The
concept assumes Differential Global Positioning
System (DGPS), augmented ADS-B, 4-dimensional
flight management system (4D-FMS), wind detection
sensors onboard the aircraft, and cockpit automation
that are not extant in today’s NAS.

Figure 2. Safe Zone for Pairing

To ensure safe operation, a minimum separation
is maintained between landing aircraft that do not
belong to the same pair. This separation is
determined based on the wake separation category of
the aircraft involved. The following four categories
are recognized: Small (S), Light (L), B757 (7), and
Heavy (H), in accordance with [4]. The enforced
wake separation in seconds for various combinations
is provided in a wake separation matrix as shown in
Table 2.

Table 2. Enforced Wake Separation Matrix
 Following Aircraft

 S L 7 H
S 98 83 83 72
L 147 83 83 72
7 180 125 125 106

Leading
Aircraft

H 213 152 152 106

Another important prerequisite for the HITL
simulations was a careful redesign of the airspace so
that the arrival traffic can safely follow their
prescribed 4D trajectories from their respective
arrival streams [6]. This involved a split towards the
end of the arrival streams to enable routing from each
arrival stream to land an arriving aircraft on either of
the two runways involved. The aerial view of the
redesigned airspace used in this study, along with the
geometry of the five arrival streams (Big Sur,
Modesto, Oceanic, Point Reyes, Yosem) that were
part of the HITL simulations are shown in Figure 3 in
the vicinity of runways 28L and 28R at San Francisco
airport (SFO). The flying direction of the arrival
aircraft is shown using yellow arrows before the split
points and using pink arrows after the split points
along the arrival streams. The final portion of the
paths starting from the coupling point and ending on
the runways is shown in light green. This portion
corresponds to the approach patterns of an aircraft
pair illustrated in Figure 1.

Figure 3. Arrival Stream Geometries

Formulation of the Pairing Problem

Some preliminary notations and definitions
needed for problem formulation are presented first.
Let Y={l, r} represent the set of very closely spaced
parallel (left and right) runways to land the aircraft
on, and M={m1, m2, …, mk} represent the set of
arrival streams for the aircraft to be scheduled for
landing. For the arrival streams used in the current

study, we have M={big_sur, modesto, oceanic,
point_reyes, yosem}. These arrival streams are
illustrated in Figure 3.

The set of arriving aircraft to be scheduled is
denoted by A={a1, a2, …, an}, where ai = (etaN,i,
[etaEL,i, etaLL,i], [etaER,i, etaLR,i], wi, si, gi) is the record
for aircraft i. etaN,i is the nominal estimated time of
arrival (ETA) of aircraft i at the coupling point.
[etaEL,i, etaLL,i] and [etaER,i, etaLR,i] are the early and
late ETA of aircraft i at the left and right coupling
points, respectively. wi ∈ {S, L, 7, H}, si ∈ M, and gi
are the wake category, the arrival stream, and the
pair-group category for aircraft i, respectively.

The wake separation matrix W is a 4x4 wake
matrix as shown in Table 2, where entry wij is the
required safe separation between non-paired aircraft
of types i and j, with i, j ∈ {S, L, 7, H} and i is ahead of
j. The target separation window between the
scheduled times of arrival (STAs) of two aircraft to
be paired is denoted as tp. For the purpose of this
study, tp= 15 seconds, and we use the wake
separation matrix given in Table 2.

A scheduling solution consists of a Scheduled
Time of Arrival STAi at the coupling point and a
runway assignment ri for a (maximal) subset of A. A
feasible scheduling solution is one in which a set of
constraints are satisfied. Several classes of
constraints are defined and need to be enforced.
These include temporal constraints, sequencing
constraints, separation constraints, pair-group
constraints, and runway assignment constraints.

A temporal constraint places a restriction on the
acceptable range for the STA values of the aircraft
being scheduled for landing. In our context, the STA
for an aircraft should lie within the ETA time
window at the coupling point for its target runway.

A sequencing constraint places a restriction on
the aircraft arrival sequence for the runways. In other
words, it limits the acceptable order for the arrival
aircraft as they pass through their respective coupling
points. In our study, no overtaking is allowed among
aircraft arriving from the same stream. Hence, within
each arrival stream, the order of STA values for
arriving aircraft to the two runways should
correspond to the order of the aircraft’s nominal ETA
values at the coupling point.

A separation constraint defines the minimum
safe distance among the aircraft as they fly through
the airspace. In our context, the wake separation
matrix and the wake categories of the arriving aircraft
define the separation constraints. The separation
between arriving and non-arriving aircraft is a
complication that is not considered in the current
study and could be a subject of future research.
However, part of the requirements for redesigning the
airspace and the arrival trajectories was to minimize
the potential occurrence of separation conflicts
between arriving and non-arriving aircraft.

Pair-group constraints impose restrictions on
the set of aircraft that could be paired. This is
included to enable additional level of control on
which aircraft should not be paired with each other.
Factors such as aircraft weight and speed profile may
be used to derive the pair grouping. Two aircraft
may be paired only if they belong to the same pair
group.

Runway assignment constraints are the rules that
define the desired or legal runway assignment for the
arriving aircraft. We distinguish between single
aircraft runway assignment rules, and paired aircraft
runway assignment rules. The set of runway
assignment rules R is the union of the set of single
aircraft runway assignment rules (R1) and the set of
paired aircraft runway assignment rules (R2), that is R
= R1∪R2, with R1={(m, y) | m ∈ M, y ∈ Y} and
R2={((m1, y1), (m2, y2)) | m1, m2 ∈ M and y1, y2 ∈ Y}.
A single aircraft runway assignment rule (m, y) ∈ R1
indicates that a single aircraft arriving from stream m
should be scheduled to arrive at runway y, while an
aircraft-pair runway assignment rule ((m1, y1), (m2,
y2)) ∈ R2 indicates that two arrival aircraft that are
going to be paired with the leader arriving from
stream m1 and the following aircraft arriving from
stream m2 should be assigned to runways y1 and y2
respectively. Also, it should be noted that when in
conflict, a paired aircraft runway assignment rule
overrides a single aircraft runway assignment rule.
The runway assignment rules in use for the HITL
simulations conducted in [6] will be presented later in
the paper.

The Pair-Scheduling Problem (PSP) for landing
single and paired aircraft to closely spaced parallel
runways can be formulated as follws:

PSP Instance: A tuple of the form (A, W, tp, R),
where A={a1, a2, …, an} is a set of aircraft records,
W is a 4x4 wake separation matrix, tp is the pairing
window or the target separation window between two
paired aircraft as they cross their respective coupling
points, and R is the set of runway assignment rules.

PSP Objective: To find a feasible scheduling
solution of a maximal subset of A subject to the
temporal, sequencing, separation, pair-group, and
runway assignment constraints.

To develop a pairing algorithm for solving PSP,
and use it in the HITL simulations of [6], we started
from the prototype provided in [4]. Then we made
several enhancements that addressed some of the
shortcomings based on new requirements and
feedback received during an initial pilot study to
make the approach suitable for use in real-time HITL
simulations.
Notes on Computational Complexity

One of the key questions in studying any
problem is whether or not there exists an efficient
algorithm that solves the problem optimally.
Answering this question in general is not an easy
task. A branch of computer science commonly
referred to as computational complexity is devoted to
studying this matter, where problems are classified
into different computational classes. As discussed
earlier, the PSP problem defined earlier belongs to a
general class of problems known as Scheduling
problems. Many of the scheduling problems belong
to the NP–hard class of problems. Hence, finding a
general solution strategy that solves an arbitrary
instance of these problems optimally in a reasonable
amount of time is generally considered a hopeless
pursuit [9, 29].

It is not clear whether the PSP problem defined
earlier belongs to the class of NP–hard problems or
not. Presenting a proof about the computational
complexity of PSP requires rigorous mathematical
exposition, and is beyond the scope of this paper.
However, some evidence is provided that suggest
PSP might belong to the NP–hard class of problems.
In particular, there exist two closely related aircraft
scheduling problems that are known to be NP–hard.
These are the aircraft landing problem, which was
studied by Beasley et al. [23], and the problem of
parallel aircraft landing with sequence-dependent

separation requirements. These problems were
reported to be NP–hard in [23] and [30],
respectively.

It should be noted that during the course of this
research while attempting to adopt a solution
strategy, the set of requirements, constraints, and
control parameters that define a feasible scheduling
solution were in a constant state of flux. These
requirements underwent several rounds of
adjustments as various issues and limitations
surfaced. Given the evidence that PSP might belong
to the NP–hard class of problems, suggested that the
best course of action might be to seek algorithmic
solutions that are practical, adaptable, and can
produce feasible scheduling results very efficiently.
This required a solution strategy that would be
flexible enough to be adjusted as the requirements
and constraints were being stabilized. On the other
hand, we needed a prototype that could be developed
in parallel and integrated into the system for
conducting the real-time HITL simulations that were
planned [6].

The availability of Kupfer’s recent prototype [4]
and its implementation based on the genetic and
evolutionary algorithms [31–33] provided a very
suitable candidate. The underlying genetic algorithm
that was used to solve the problem could be adjusted
and enhanced to suit the needs of the new problem
with relative ease. These adjustments and
enhancements will be explained in the following
section.

Developing the Pairing Algorithm
This section describes the enhancements made

to the initial basic implementation of Kupfer [4], the
concerns that each enhancement was intended to
address, and the significance of each of these
enhancements. A brief overview of Kupfer’s GA-
based algorithm is presented first. This would set the
stage for the later discussion where we explain the
enhancements and adjustments that were made to
make it suitable for real-time HITL simulations.

Kupfer’s algorithm consists of three main steps.
In the first step, an initial population of feasible
scheduling solutions is created. The next step is the
optimization phase comprised of a fixed number of
iterations. During each iteration in the optimization
phase, the current population of feasible solutions

undergoes one generation of evolutionary
optimization, followed by a greedy step to further
optimize each resulting solution. In the final phase,
the best solution encountered so far is reported. Of
particular interest in the discussions that follow are
two components of the algorithm. These are the
initialization algorithm and the objective function.
The initialization algorithm is responsible for seeding
the genetic algorithm with its initial pool of feasible
scheduling solutions. The objective function is used
to determine the relative merit of a given scheduling
solution and operates by associating a cost value to
each candidate scheduling solution.

Problem Modeling Enhancements
The first set of enhancements made to Kupfer’s

greedy GA approach was applied at the problem
modeling level. These adjustments intended to
extend Kupfer’s approach to fit the requirements of
the PSP problem formulation. These enhancements
included the following: i) implementing the Oceanic
arrival stream, and ii) extending the algorithm to
enable different ETA windows for each aircraft at the
left and right coupling points.

Improved Solution Space Control
The next set of enhancements made to Kupfer’s

greedily enhanced GA approach was applied to
enable better and more granular control over the
feasible solution space. These enhancements are
explained next.

Runway Assignment and Hard Pairing Rules
A major undertaking while developing the

pairing algorithm was to ensure that the pairing and
runway assignment rules are properly implemented
and followed. These rules were iteratively defined
after several rounds of discussion among the
researchers and subject matter experts. The final set
of pairing rules adopted for this research can be
expressed as the union of single aircraft runway
assignment rules R1 and the paired aircraft runway
assignment rules R2 as listed below:

R = R1 ∪ R2

R1 = { (big_sur, l), (modesto, r), (oceanic, l),

 (point_reyes, l), (yosem, r)}

R2 = { ((point_reyes, l), (oceanic, r)),

 ((point_reyes, l), (big_sur, r)),

 ((oceanic, l), (big_sur, r)),

 ((yosem, l),(modesto, r))}

The above rules can be explained as follows.
The rules in R1 indicate that single aircrafts arriving
from Big Sur, Oceanic, and Point Reyes stream are
by default assigned to the left runway, while those
arriving from Modesto and Yosem streams are by
default assigned to the right runway. The rules in R2
indicate how the rules in R1 are over-ridden when
aircrafts are paired. For example, the first rule
((point_reyes, l), (oceanic, r)) indicates that for an
aircraft-pair arriving from the two arrival streams
Point Reyes and Oceanic, the applicable runway
assignment rule would be for the aircraft arriving
from Point Reyes to land on the left runway and for
the aircraft arriving from Oceanic to land on the right
runway.

Soft Rules and Preferences

In addition to the above set of hard rules, there
were some soft rules based on controller preferences.
For example, it was desirable not to pair aircraft that
are by default destined to the same runway, when a
more or less equivalent choice existed. As an
example, unless no better solution existed, it would
be desirable to avoid pairing two aircraft approaching
from Modesto and Yosem arrival streams. Doing so
would involve a change in the runway assignment,
requiring manual intervention and coordination that
would lead to an increase in controller and pilot
workload. Such soft rules were handled by lowering
the weight assigned to a less desirable pair, in the
objective function that guided the genetic algorithm
during the search process.

Manual Override and Forbidden Pairs
Another important feedback received during

initial pilot study of the system, was the need to allow
manual override by the air traffic controllers on the
pairing solution. From the beginning, the controllers
had the option not to accept a suggested pair, giving
them the final say in the creation of pairs. However,
there was a need to communicate an undesirable pair
to the pairing algorithm so that the same undesirable
pair would not be suggested over and over again.
This was implemented by maintaining a list of
forbidden pairs. A forbidden pair is a pair of aircraft
with designated leader and follower, which the

pairing algorithm should not produce. Once the
controllers identify a pair as forbidden, the pairing
algorithm would add it to its list of forbidden pairs.
These pairs would no longer show up as candidate
pairs in the future. To implement this during the
optimization, the forbidden pairs list was consulted
during the creation of the initial population seed,
during the course of the optimization, and once again
when reporting the pairing results.

In order to gradually lead the exploration out of
the undesirable portion of the search space, the
objective function was used to discourage forbidden
pairs from appearing in a solution by giving such
pairs a much lower weight. To ensure no forbidden
pairs would leak into the final pairing solution, a
pruning of the pairing solution was done just before
reporting the pairing result to the controllers.

Implementing and honoring the forbidden pairs
feature was considered a key requirement for the
HITL simulations. However, an important metric for
the evaluation of the pairing algorithm is the quality
of the pairing results it can produce. The goal was to
ensure the pairing results produced and presented to
the controllers were of high quality, so that maximum
percentage of the presented pairs were accepted, thus
minimizing the need for the forbidden pair feature to
be exercised. In the experimental results section we
will show statistics on how often the forbidden pairs
features were exercised during the HITL runs.

Rewriting the Objective Function
The objective function was redesigned from

scratch with all the requirements, including the new
ones in mind. The revised objective function
associated a cost to each scheduling solution
evaluated during the course of optimization, and the
genetic algorithm was setup to find the scheduling
solution of minimum cost. For a given scheduling
solution, the following cost function was used:

 cost = a0 + a1 . P + a2 . S + a3 . maxSTA

where P is the effective number of scheduled aircraft
pairs, S is the number of scheduled aircraft singles,
maxSTA is the largest STA among the scheduled
aircraft, and a0, a1, a2, a3, are parameters used to
shift and scale the cost factors appropriately. Among
these, a0 was chosen to shift the cost values to a
meaningful range, and was not really significant,
while a1, a2, a3, were selected in order to provide the

relative significance for various cost factors. The
values used for these parameters in our experiments
were as follows:

 a0 = 10,000
 a1 = 100
 a2 = 10
 a3 = 0.05

Recall from earlier discussion that certain pairs
were undesirable, or forbidden. In order to allow a
smooth search space exploration, an attenuation
factor was used to reduce the contribution of the
undesirable or forbidden pairs to P. The undesirable
pairs were those involving aircraft that would require
a change in their assigned runways. An attenuation
factor of 0.8 was used to cut the contribution of such
pairs to P by 20% as compared to a regular pair. For
the forbidden pairs, an attenuation factor of 0.1 was
used to make the contribution of such a pair to the
objective function relatively insignificant. This would
cause the algorithm to look harder for scheduling
solutions that do not contain forbidden pairs. Note
that we did not assign a negative cost factor to
forbidden pairs, as this would cause interference with
other cost factors. As a final assurance, any
forbidden pairs were always filtered out of the
pairing solution before reporting the list of aircraft
pairs to the controllers.

Improving the Effectiveness of Finding Pairs
Another significant challenge that had to be

overcome during the development phase of the
pairing algorithm was to ensure that it could find and
schedule as many aircraft pairs as possible. It was
noticed, however, that for some relatively simple
scenarios, the algorithm did not find pairs that were
easily detected by simple visual inspection of the
arrival streams.

Identifying Root Causes of the Problem
Careful investigation suggested that the main

contributor to this degraded performance was the
algorithm used for selecting the initial population
pool for the genetic algorithm. In particular, two
aspects of the initialization algorithm needed
improvement.

The first was that the initial population was
obtained by making repeated calls to a deterministic
algorithm. This would result in the same exact

scheduling solution to be returned upon each call,
thus eliminating population diversity in the initial
population pool. The lack of population diversity
caused significant deterioration in the solution quality
that is usually achievable within an acceptable
number of generations of the genetic algorithm.

The second issue with the initial population
selection was that the algorithm did not explicitly
seek to find solutions containing aircraft pairs.
Instead, the algorithm simply settled for any feasible
solution regardless of whether or not it contained any
aircraft pairs. These two issues combined, often
resulted in an initial pool of individual solutions
consisting of multiple copies of the same exact
feasible solution not containing any aircraft pairs.

As a result, the initial population was often quite
suboptimal and contained no diversity. This resulted
in a significant impediment to the genetic algorithm’s
ability to escape from the local minima and find
solutions of superior quality.

New GA Initialization Algorithm
To address the quality degradation issue and to

boost the algorithm’s ability in finding adequate
number of aircraft pairs, a new and improved GA
initialization algorithm was developed. The new
approach still used the idea of calling the same (new)
algorithm multiple times to produce the seed
population for the genetic algorithm. However,
special attention was given to two aspects of the
algorithm, based on the root causes identified for
degraded quality, as discussed earlier. First, the new
algorithm was non-deterministic, producing different
feasible solutions on consecutive calls. Secondly, the
algorithm was explicitly designed to target finding
feasible solutions that maximize the number of
aircraft pairs.

This was done using a very efficient greedy non-
deterministic algorithm for solving the PSP problem
that worked off of a partial schedule, which was
constructively formed starting from an empty set.
The key observation was that at any given moment in
time, the set of choices for the next aircraft to be
scheduled for landing is the set of aircraft leading the
pack in each of the arrival streams. In other words,
the algorithm would only need to focus on the first
unscheduled aircraft on each arrival stream, arriving
the coupling point. This observation was utilized to
reduce the search space significantly. This was
achieved by maintaining the set of arrival aircraft

approaching on different streams using separate
queues, and focusing on the first candidate in each
queue when searching for the next aircraft to be
scheduled.

The non-determinism was achieved by selecting
a random STA for the best candidate within the
feasible range, while satisfying all the constraints.
Since the focus was still among the first arriving
aircraft from each arrival stream, this algorithm is a
deterministic greedy pairing algorithm using the First
Come First Served (FCFS) heuristic. The outline of
the algorithm is given below:

1. Create an empty Schedule.

2. Create arrival stream queues, each sorted in
the increasing order of the nominal ETA
values.

3. Pop the first aircraft from each non-empty
queue and add it to candSet .

4. If candSet is empty no more aircraft can be
scheduled legally. Report the schedule
constructed so far and exit.

5. Otherwise, evaluate each of the aircraft in
candSet to see if it can be legally scheduled,
given the partial schedule constructed so far.
Remove from candSet any aircraft that
cannot be scheduled legally.

6. Let B ∈ candSet be the aircraft that could
be scheduled earliest while satisfying all
constraints, or B = ∅ if candSet is empty.

7. If (B = ∅), go to step 3.

8. Remove B from candSet, schedule B
randomly in its legal range.

9. Pop the next aircraft from the stream
containing B (if there exists one) and add it
to candSet.

10. Go to step 4

Much of the algorithm is quite straightforward.
The most interesting and involved steps in this
algorithm are steps 5 and 6. Step 5 is a pruning step
to eliminate from consideration any aircraft in the
candSet that cannot be legally scheduled given the
partial schedule that is constructed so far. Note that
if an aircraft cannot be legally scheduled, given the
partial schedule that is constructed so far, there is no

need to consider it in the future either. This is
because of the constructive and greedy nature of the
algorithm. Therefore, we can safely eliminate these
aircraft from consideration. Step 6 seeks to find the
best among the remaining candidate aircraft in
candSet. It is implemented using a case-based
analysis that looks at whether or not the last
scheduled aircraft was single or paired. Then it looks
at all the choices to pick the aircraft that can be
scheduled as early as possible, while satisfying all the
scheduling constraints. The choice that gives the
minimum possible STA value meeting all the wake
separation, pairing, pair grouping, and other
constraints is returned as the best choice stored in B.

Once the best choice among the candidate
aircraft is identified, it is scheduled within its legal
range in a randomized fashion in step 8. This step
provides the desired non-determinism in the initial
population pool, resulting in diversity of the seed
population. The genetic algorithm can then use this
diversity for much more effective exploration of the
solution space using genetic mutation and crossover
operations.

Experimental Results
The pairing algorithm described in this paper

was implemented in C/C++ using the Genetic
Algorithm Library GAlib [34] and integrated into the
ground air traffic control system for HITL
simulations [6]. A stand-alone version was also
implemented to conduct off-line performance and
stress testing. The stand-alone runtimes are
performed on a Mac Pro machine with 2 x 2.8 GHz
Quad-Core Intel Xeon processor. This section
presents the results of experiments conducted to
measure the performance, scalability, and quality of
the pairing results produced by the pairing algorithm.

Performance Results
The first set of results, presented in Table 3,

shows the impact of the enhancements made to the
GA initialization algorithm on the number of pairs
discovered by the pairing algorithm. Each row of the
table presents one of the scenarios that were tested.
The first six test cases (row 1 through 6) were chosen
randomly from those that were being developed in
preparation of the HITL simulations [6]. The last test
case (row 7) shows the scenario used to help identify

the issues with the original GA initialization
algorithm.

As Table 3 shows, with the new initialization
algorithm, significantly more number of aircraft pairs
were found and scheduled. In many cases the
original algorithm failed to find any pairs, even after
evolving for several thousand generations. The total
numbers of discovered pairs in these runs were 6 and
40, using the original and improved GA initialization
algorithms, respectively. Note that this improvement
was achieved at the expense of only about 5%
increase in the overall runtime.

Table 3. Impact of GA Initialization Algorithm

Test

A/C

Original

#pairs runtime (s)
Improved

#pairs runtime (s)

1 11 0 1 4 2

2 12 1 3 5 3

3 14 5 4 7 4

4 16 0 2 6 3

5 18 0 2 5 2

6 20 0 3 6 3

7 34 0 6 7 5

Total 6 21 40 22

The scenarios developed for the HITL
simulations [6] were intended to exercise the system
in different operating modes. The main objective in
preparing these scenarios was to provide coverage for
the operational procedures that provide insights into
the proper allocation of tasks under TACEC for
automation and the air traffic controllers. These
scenarios were quite helpful in revealing certain
limitations of the original implementation of the
pairing algorithm and identifying potential areas that
needed enhancements. However, they were not
developed to stress the pairing algorithm sufficiently.
In order to conduct a more detailed evaluation of the
new GA initialization algorithm, a large suite of
stress test scenarios were generated using a
randomized parametric algorithm for generating
arrival scenarios. The parameters included the
number of arrival streams, the number of aircraft, the
number of pair groups, and the minimum and

maximum spacing requirements between the arrival
times of consecutive aircraft on the same arrival
stream.

Experiments were conducted to see the impact
of the GA initialization algorithm on the performance
of the pairing algorithm. Table 4 shows the results of
these experiments. Each row in this table
corresponds to over two hundred different scenarios,
each with the same number of aircraft. The average
number of pairs and the average runtime in seconds
are shown on each row for all the runs with the same
number of aircraft in the scenario.

The table shows the average value for the
number of pairs and runtime across all the runs with
the same number of aircraft in the scenario as
specified in the first column. It can be seen that the
pairing algorithm with the original GA initialization
algorithm had significant difficulty in scheduling
aircraft pairs, while the implementation of the pairing
algorithm using the improved version of the GA
initialization algorithm found many pairs. This came
at the expense of about three-fold increase in runtime,
which is reasonable considering the improved
performance in terms of the number of aircraft pairs
scheduled. Besides, as discussed in the next section
the runtimes remained quite manageable and within
the expected response time requirements for a real-
time application.

Table 4. Stress Test Scenario Result Averages

A/C

Original

#pairs runtime (s)

Improved

#pairs runtime (s)

10 0.03 1.20 1.42 2.11

20 0.02 2.16 4.30 4.64

30 0.00 3.17 7.12 7.40

40 0.00 4.26 11.76 10.66

50 0.00 5.47 15.76 14.26

60 0.00 6.64 18.75 18,28

70 0.00 7.83 21.62 22.02

80 0.00 9.04 25.02 26.70

90 0.00 10.31 29.93 30.84

100 0.00 11.50 32.74 35.54

Total 0.05 61.58 168.42 173.45

To show the total number of aircraft that could
be landed in each scenario, we need to include the
number of single aircraft that were scheduled for
landing as well. Figure 4 shows the total number of
aircraft scheduled for landing on average, for the
stress test scenarios that were used to obtain the
results presented in Table 4.

As shown in Figure 4, the implementation with
the original GA initialization algorithm was not very
successful at finding and scheduling pairs of aircraft
for simultaneous landing. As a result, the total
number of aircraft that were scheduled for landing
was considerably lower when we used the original
GA initialization algorithm, although the number of
aircraft scheduled for single landing was generally
equal or more than those obtained using the improved
GA initialization algorithm.

In the rest of the experimental results section,
unless explicitly mentioned otherwise, the improved
GA initialization algorithm is used and implied for all
the reported results.

Figure 4. Impact of the Initialization Algorithm

10 20 30 40 50 70 80 90 100 60

Using original GA initialization algorithm
Paired

Single

Paired

Single
Using improved GA initialization algorithm

A/C in the test scenario

10

20

100

90

80

70

60

50

40

30

A/C scheduled

Efficiency and Scalability Results
An important characteristic of a pairing

algorithm to be used for real-time applications is a
measure of its scalability. An algorithm is considered
efficient if its runtime scales sufficiently slowly. This
allows its application on large instances and results in
response times that are acceptable for real-time
applications. The same stress test scenarios used to
generate the results for Table 4 were employed to test
the scalability of the GA based pairing algorithm.

Figures 5 and 6 show the percentage of aircraft
successfully scheduled for landing, and the runtime
of the pairing algorithm, respectively, as a function of
the number of aircraft in the scenario. In Figure 5,
the percentage of aircraft successfully scheduled is
further broken down into its paired-landing and
single-landing constituents.

As shown in Figure 5, the percentage of the total
aircraft successfully scheduled for landing stays at a
respectable value, well above 95% even for problem
instances containing up to one hundred aircraft. At
the same time, the percentage of the aircraft that are
scheduled for paired landing comprises a significant
portion of the total, ranging from 30% to more than
60% of all the aircraft. This means that the algorithm
performs in a very scalable fashion with no sign of
deterioration as the number of arriving aircraft in the
problem instance approaches one hundred or more.

Figure 5. Percentage of Scheduled Aircraft

As Figure 6 shows, a 100-aircraft instance of the
problem required no more than 40 seconds to solve,
on average. Most of the scenarios in the HITL
simulations contained 60 or fewer aircraft, requiring
no more than 20 seconds to solve, on average. As

discussed earlier, the pairing occurs about 30 minutes
prior to the aircraft reach the terminal area boundary.
A pairing algorithm with less than half a minute of
turnaround time proved quite adequate in the HITL
simulation that was conducted. On most instances
the pairing result was available in less than 10
seconds since the number of aircraft in the problem
instance was often 30 or less.

Quality of the Scheduling Results
Note that ultimately making a judgment call

about the quality and suitability of an aircraft pair
identified for simultaneous landing is the
responsibility of the human operators and air traffic
controllers. To measure how good the pairing
algorithm’s results were, the HITL simulations were
examined to see how often the controllers exercised
the forbidden pair feature. The result of this
investigation is shown in Figure 7.

Figure 6. Runtime Profile of the Algorithm

Figure 7. Percentage of Manual Override Usage

The data that was collected during the HITL
simulation consisted of 18 runs, each representing a

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2

7
6
5

3
4

Simulation runs

Percentage of manual override per run

Just under 3% manual override, on average

10 20 30 40 50 70 80 90 100 60

10
20

100
90
80
70
60
50

30
40

A/C in the test scenario

Percentage of A/C scheduled

Total
Paired
Single

10 20 30 40 50 70 80 90 100 60

 5
10

35
30
25

15
20

A/C in the test scenario

Runtime (s)

few hours of simulation. During the course of these
experiments the pairing scheduler suggested a total of
9,381 pairs. The air traffic controllers accepted all
pairs except for 281 (less than 3%), which were
identified as forbidden pairs. In other words, the
pairing algorithm produced results that were
acceptable in over 97% of the instances. This is a
very encouraging result and speaks to the
effectiveness of the objective function that was
developed to help guide the search process.
Conclusion

An improved pairing algorithm for Very Closely
Spaced Parallel Approaches is presented. An earlier
greedily enhanced genetic algorithm prototype was
adopted, extended and enhanced in several ways to
make it suitable for automatic pairing and scheduling
of paired and single aircraft and for use in a recent
HITL simulation. The key contributions of this paper
include:

• Extending the problem formulation and extending
the basic Implementation to allow its application
to the extended problem.

• Evaluating the performance of the basic algorithm
and identifying GA initialization algorithm as root
cause of its degraded performance.

• Implementation of a much more effective
randomized GA initialization algorithm that
specifically seeks to maximize the number of pairs
while meeting all the constraints.

• Development of a simplified and improved
objective function to guide the search process.

• Putting in place proper controls in the algorithm to
guarantee strict adherence to hard rules and
preferential adherence to soft rules.

• Implementation of forbidden-pair feature to enable
air traffic controllers to instruct the pairing
algorithm about undesirable pairs.

The resulting algorithm was integrated and used
successfully in recent HITL simulations conducted at
NASA Ames Research Center. In addition to the
scheduling scenarios that were part of the HITL
simulations, an extensive set of stress test scenarios
were developed to exercise the pairing algorithm
more thoroughly. Experimental results indicate:

• The runtime of the proposed algorithm scales
linearly with the number of aircraft in the problem
instance, with acceptable response time making it
suitable for real-time application.

• The proposed pairing algorithm succeeded in
finding significantly more number of pairs,
compared to its predecessor.

• The pairing results quality was high despite its fast
running time. Analysis of the HITL simulation
results indicated that over 97% of the pairs
suggested by the algorithm were accepted by the
air traffic controllers.

Some generalizations of the problem that might
be of interest for future research include extensions to
more than two parallel runways, and inclusion of
additional constraints and objectives such as
balancing the traffic on the runways, as well as
simultaneous consideration of arrival and departure
traffic. Conducting research into paired arrival and
departure scheduling has other practical long-term
applications. The insights gained from these studies
could help extend the capabilities of new and
improved tools for terminal area scheduling such as
those currently under development [5].

References

 [1] Bone, R., A. Mundra, B.O. Olmos, 2001, “Paired
Approach Operational Concepts,” Digital Avionics
Systems Conference, Daytona Beach, FL.

[2] Abbott, T. & Elliot, D., 2001, “Simulator
Evaluation of Airborne Information for lateral
Spacing (AILS) Concept,” NASA/TP-2001-210665.

[3] Miller, M.E., S. Dougherty, J. Stella, P. Reddy,
2005, “CNS Requirements for Precision Flight in
Advanced Terminal Airspace,” IEEE Aerospace
Conference, Big Sky, MO.

[4] Kupfer, M., 2009, “Scheduling Aircraft Landings
to Closely Spaced Parallel Runways,” Eighth
USA/Europe Air Traffic Management Research and
Development Seminar, Napa, CA.

[5] Thipphavong, J., D. Mulfinger, A. Sadovsky,
2010, “Design Considerations for a New Terminal
Area Scheduler”, AIAA Aviation Technology,
Integration, and Operations, Fort Worth, TX.

 [6] Verma, S., T. Kozon, Deborah Ballinger, 2010,
“Preliminary Guidelines – Air Traffic Control

Procedures for Pairing Aircraft for Closely Spaces
Simultaneous Approaches,” Applied Human Factors
Ergonomics Conference, Miami, FL.

 [7] Federal Aviation Administration, 2008, “
National Aviation Research Plan,” http://nas-
architecture.faa.gov/nas/downloads/

[8] Federal Aviation Administration, 2006, Order
8260.49A, “Simultaneous Offset Instrument
Approach (SOIA).”

[9] Brucker, P., 2009, Scheduling Algorithms, Fifth
Edition, Springer-Verlag, Berlin, Germany.

[10] Graham, R.L., E.L. Lawler, J.K. Lenstra, A.H.G.
Rinooy Kan, 1979, “Optimization and
Approximation in Deterministic Sequencing and
Scheduling: A Survey,” Annals of Discrete
Mathematics, Vol. 5, pp. 278−326.

[11] Gopalan, R., K.T. Talluri, 1998, “Mathematical
Models in Airline Schedule Planning: A Survey,”
Annals of Oper. Res., Vol. 76, pp. 155−185.

[12] Etschmaier, M.M., D.F.X. Mathaisel, 1984,
“Aircraft Scheduling – The State of the Art,” 24th
AGIFORS Annual Symposium, pp. 181– 225.

[13] Dear, R.G., 1976 “The Dynamic Scheduling of
Aircraft in the Near Terminal Area,” Research Report
R76-9, MIT Flight Transportation Laboratory,
Cambridge, MA.

[14] Psaraftis, H.N., 1978 “A Dynamic Programming
Approach to the Aircraft Sequencing Problem,”
Research Report R78–4, MIT Flight Transportation
Laboratory, Cambridge, MA.

[15] Ciesielski, V., P. Scerri, 1997, “An Anytime
Algorithm for Scheduling Aircraft Landing Times
Using Genetic Algorithms,” Australian J. of
Intelligent Information Processing Systems, Vol. 4,
pp. 206–213.

[16] Grosche, T., A. Heinzl, F. Rothlauf, 2001, “A
Conceptual Approach for Simultaneous Flight
Schedule Construction with Genetic Algorithms,”
Applications of Evolutionary Computing, Lecture
Notes in Computer Science, Vol. 2037/2001, pp.
257–267, Springer.

[17] Beasley, J.E., M. Krishnmoorthy, Y.M.
Sharaiha, D. Abramson, 2004, “Displacement
Problem and Dynamically Scheduling Aircraft

Landings,” J. of the Operational Research Society,
Vol. 55, Issue 1, pp. 54–64, Palgrave, Macmillan.

[18] Hu, X.-B., W.-H. Chen, 2005, “Genetic
Algorithm based on Receding Horizon Control for
Aircraft Sequencing and Scheduling,” J. of
Engineering Approaches of Artificial Intelligence,
Vol. 18, No. 5, pp. 633–642.

[19] Hu, X.-B., E. Di Paolo, 2009, “An Efficient
Genetic Algorithm with Uniform Crossover for Air
Traffic Control,” Computers and Operations
Research, Vol. 36, Issue 1, pp. 245–259.

[20] Chandran, B., H. Balakrishnan, 2007, “ Dynamic
Programming Algorithm for Robust Runway
Scheduling, ” American Control Conference, New
York, NY.

[21] Lee, H., H. Balakrishnan, 2008, “A Study of
Tradeoffs in Scheduling Terminal Area Operations,”
Proceedings of the IEEE, Vol. 96, No. 12, pp. 2081–
2095.

[22] Ernst, A.T., M. Krishnamoorty, R.H. Storer,
1999, “Heuristic and Exact Algorithms for
Scheduling Aircraft Landings,” Networks Int’l J.,
Vol. 34, No. 3, pp. 229–241.

[23] Beasley, J.E., M. Krishnamoorthy, Y.M.
Sharaiha, D. Abramson, 2000 “Scheduling Aircraft
Landings – The Static Case,” Transportation Science,
Vol. 34, Issue 2, pp. 180–197.

[24] Roy, K., A.M. Bayen, C.J. Tomlin,2005,
“Polynomial Time Algorithms for Scheduling of
Arrival Aircraft,” AIAA Guidance, Navigation anc
Control, San Francisco, CA.

[25] Abela, J., D. Abdamson, M. Krishnamoorthy, A.
De Silva, G. Mills, 1993, “Computing Optimal
Scheduling for Landing Aircraft,” Proc. 12th National
ASOR Conference, Adelaide, Australia, pp. 71–90.

[26] Balakrishnan, H., B. Chandran, 2006,
“Scheduling Aircraft Landings under Constrained
Position Shifting,” AIAA Guidance, Navigation, and
Control Conference and Exhibit, Keystone, CO.

[27] Jani, M., 2008, “Modeling the Capacity of
Closely-Spaced Parallel Runways using Innovative
Approach Procedures,” Transportation Res., Part C:
Emerging Technologies, Vol. 16(6), pp. 704–730.

[28] Goldberg, D.E., 1989, Genetic Algorithms in
Search, Optimization, and Machine Learning,
Addison-Wesley Professional.

[29] Garey, M.R., D.S. Johnson, 1979, Computers
and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co., New York.

[30] Bayen, A.M., T. Callantine, C.J. Tomlin, Y. Ye,
J. Zhang, 2004, “Optimal Arrival Traffic Spacing via
Dynamic Programming,” AIAA Conference on
Guidance, Navigation and Control, Providence, RI

[31] Goldberg, D.E., 1989, Genetic Algorithms in
Search, Optimization, and Machine Learning,
Addison-Wesley Professional.

[32] Eiben, A.E., J.E. Smith, 2003, Introduction to
Evolutionary Computing, Springer.

[33] Haupt, R.L., S.E Haupt, 2004, Practical Genetic
Algorithms, Second Edition, Wiley Interscience.

[43] Wall, M., 1996, “GAlib: A C++ Library of
Genetic Algorithm Components,” Mechanical
Engineering Departement, Massachusetts Institute of
Technology, http://lancet.mit.edu/ga/. Save.

29th Digital Avionics Systems Conference

October 3-7, 2010

